A smart approach to waste management

Doosan Lentjes is a world leader in the generation of energy from waste. Our success is built on decades of experience in planning and building individual process sections and turnkey plants: Almost 80 units built around the globe recover valuable energy and materials from millions of tons of waste. Our innovative engineering spirit allows us to design advanced waste-to-energy solutions complying with all European requirements as per the Best Available Techniques Reference (BREF) documents of the Industrial Emissions Directive (IED).

Largely CO₂neutral energy

The thermal treatment of residual waste is the final, indispensable stage of a modern waste management system according to the European waste hierarchy. This approach aspires to maximize resource efficiency. When recycling is not an option, residual waste is required to be thermally treated. This allows for a safe and environmentally-sound waste disposal while generating highest possible energy yields and material recoveries. The chemically inert bottom ash left over from the incineration contains recoverable recyclates, such as ferrous and non-ferrous metals and is ideal for use for construction purposes. What’s more, the energy extracted from the waste is a valuable source for power to be exported to the national grid, as well as, for heat and steam to be used for both domestic and industrial purposes.

Waste-to-energy reduces the waste volume by up to 90% and recovers energy and materials

Waste-to-energy is an integrated part of the European waste hierarchy

Waste-to-energy complies with the most stringent emissions requirements

Waste-to-energy reduces greenhouse gas emissions by up to 80% and recovers energy and materials

Waste-to-energy reduces energy requirements by up to 70% and recovers energy and materials

Waste-to-energy is an important part of a sustainable waste management concept while contributing to an environmentally-sound energy generation.
Your trusted partner

Doosan Lentjes offers you the right solution to make your waste-to-energy project a success. In fact, we have helped customers around the world discover the dependable, cost-effective and ecological benefits of converting their waste into heat and power for municipal and industrial applications. Our plants incorporate our years of experience and reflect our determination to always be ahead when it comes to technology. This means that our customers benefit from thoroughly engineered solutions that combine tried and tested technologies with innovative processes and best-in-class project management.

Capability and exercise

Doosan Lentjes is an expert in waste-to-energy technologies. We deliver proprietary grate technologies, combustion systems and air quality control systems that provide cost-effective and efficient solutions for all your waste incineration needs. From subsystems to turnkey plants, we design and deliver solutions for maximised energy recovery, providing you with environmentally-sound and cost-effective operations backed by a guarantee of maximum safety and high efficiency. What’s more, our commitment to improving the value and performance of our products through ongoing investment in new technologies will ensure that we continue to be at the forefront of developments for waste incineration, shaping the future of the industry.

Chute-to-stack solutions

As part of the global Doosan group, our wide range of products and services makes us your one-stop partner for all your waste-to-energy needs. Our leading technologies in incineration, flue gas cleaning and steam generation are complemented by the latest in steam turbine design from Doosan Škoda Power.

People-powered

Because Doosan understands that sustainable business success depends on people performance, it defined its global 2G strategy meaning that growth of people leads to growth of business and vice versa. We, at Doosan Lentjes, strongly believe in this approach which is why we put extensive efforts into recruiting, training and developing the very best talents of tomorrow. Together with our highly committed staff, we aspire to engineer safe and reliable energy generation solutions that shape a sustainable tomorrow for generations to come.
Proven technologies from chute...

Trust us to deliver your waste-to-energy requirements using advanced and reliable technologies, such as, grate combustion. Depending on your requirements, we can provide chute-to-stack solutions or full turnkey programmes, relying on expertise that encompasses the full waste-to-energy cycle.

Grate combustion

Grate combustion is a proven thermal waste treatment technology, successfully deployed to hundreds of plants worldwide. Over time, the grate systems have been continuously optimised, perfected and adjusted to adapt to changing baseline conditions and stricter requirements. Today, grate combustion is still the most advanced technology in terms of environmental friendliness, operating reliability, flexibility, and cost effectiveness.

With close to 80 units to our credit, Doosan Lentjes is one of the world’s leading specialists in grate combustion. Our commitment to ongoing research and development has contributed significantly to the advanced state of today’s technologies. Our modern grate combustion offer unbeatable flexibility when it comes to fuels. Available in various configurations for the reliable burnout of waste across the entire calorific value range from 6.0 to 18 MJ/kg, our rugged construction allows domestic and commercial waste to be burnt without pre-treatment.

Our reciprocating grate features adjustable grate bars that move back and forth between fixed bars. Three sections are installed and the width of the grate is tailored to suit the moisture content, calorific value and composition of the waste. With low wear and tear and a high thermal load-bearing capacity of roughly 1MW/m², our water-cooled grate is suitable for the incineration of high-calorific waste, such as, solid recovered fuel. The roller grate consists of six graded cylindrical rolls switched in a row, the revolutions of which may be regulated to adapt to different waste incineration behaviour. The roller surfaces are cooled continuously by the primary air, which also enables higher calorific waste to be fed in.

Energy recovery

Recovery of the energy content of waste is a key aspect of thermal waste treatment and at Doosan Lentjes, our focus is always on achieving the highest efficiency. Of the energy initially contained in the waste, we help you to recover more than 65 percent for use by households and industry. Whether you choose to supply electric power and/or heat to a city or opt to meet the energy requirements of an industrial plant, waste-to-energy is environmentally safe, reliable and economical.

Range of application

Doosan Lentjes’ grate firing technologies are designed to handle up to 45 tons of waste per hour in a single unit. Higher total plant throughputs can be achieved by building several units. Depending on the waste composition and the corresponding calorific value, we help you select the grate type best suited. With tailor-made combustion chamber design and optimised steam generator parameters our air or water-cooled proprietary grate systems provide the highest performance and reliability.

Boiler concepts

Our leading in-house boiler designs can achieve maximum efficiencies through optimum steam parameters and minimum heat losses. What’s more, our boiler engineering features greatest flexibility in respect of individual space requirements: Adapting our designs to certain local site conditions allows us to deliver a boiler concept fully integrated into required structures.

Combustion control

Our smart in-house combustion control solutions assure highest plant availabilities, as well as, a reliable facility operation. So you harness the maximum performance potential of your incinerated waste even when featuring changing combustion properties.

Heat

Steam or hot water as district heating for households and businesses or as process heat for industrial use.

Electric Power

From steam-driven turbo generators, for households, businesses and industry.

Waste-to-Water

Steam from the waste incineration used for desalinating water.

Turbo-powered

Our steam turbines from Doosan Škoda Power are designed to meet the challenge of substantial variation in heating rates from the waste incineration process. We work closely with you to ensure our precision turbines are tailored to the specific steam parameters of your chosen incineration technology, ensuring that the steam produced is harnessed in the most efficient way possible.
Air quality control
Choose from our different flue gas cleaning technologies, including dry or wet scrubbing, selective catalytic or non-catalytic reduction, absorption and adsorption processes, to achieve reliable compliance with all applicable international emissions regulations.

Flue gas cleaning
Our advanced flue gas cleaning (FGC) systems are designed to reliably remove all critical pollutants from the flue gas while securing maximum cost-efficiency. Depending on your individual requirements, you can select from a number of FGC technologies to be applied to your process. Apart from sophisticated, multi-stage scrubber systems, we offer two main cost-efficient processes also fully complying with European emission limits as per the Industrial Emissions Directive (IED) and BREF (Best Available Techniques Reference) requirements: Our semi-dry Circoclean® and a straightforward, dry process called FER-DI® (Flexible Economic Reagent Direct Injection).

In the Circoclean® system, the flue gas flows, bottom-up, through a reactor where the chemical reactions between pollutants and absorbents, as well as, the physical adsorption take place. Hydrated lime and activated carbon are used for adsorbing acid gases, such as SO₂, HCl, HF, as well as adsorbing hydrocarbons, such as dioxins and furans and heavy metals like mercury. After the cleaning process in the reactor, the solid particles are separated in a downstream bag filter.

A large amount of the separated particles is fed back into the Circoclean® reactor which improves the consumption efficiency of the utilized reagents. This allows coping with highest loads of pollutants and sudden changes in their concentration whilst complying with emission limits. The recirculation of the clean gas secures stable flow conditions and balances different boiler loads. Injecting water directly into the reactor allows optimizing the reaction conditions for the absorption process in terms of temperature control and local humidity. The cleaned gas is released into the atmosphere through the ID fan and stack.

The straightforward FER-DI® process is especially suitable for moderate concentrations of harmful substances including acid gases, such as SO₂, HCl, HF, as well as hydrocarbons, such as, dioxins and furans and heavy metals like mercury. The removal agent which can either be sodium bicarbonate or hydrated lime (in combination with activated carbon, if required) is directly injected into the hot flue gas passing through the ducting area downstream of the boiler. After this cleaning process step, solid particles are removed from the flue gas. And because only a relatively small amount of solid particles is fed back, a recirculation of the clean gas is not required. This allows the plant to feature a compact design with a reduced footprint and, thus, lowering the investment costs.

Residue treatment
An efficient thermal waste treatment generates innocuous residues that, if properly handled, do not emit any pollutants into the environment. These substances include grate bottom ash, as well as, residues from flue gas cleaning. We deploy a number of proven processes to recover reusable resources from the substances, including bottom ash treatment for the recovery of ferrous and non-ferrous metals, waste-water treatment and solidification of residues.
Waste-to-energy as a renewable energy source

The most common thermal treatment of waste worldwide is incineration, but there is no ‘one size fits all’ solution. The size and site of the plant will influence the type of technology chosen by Doosan Lentjes.

Waste-to-energy plants consist of a number of differing components — fuel, plant and location being just a few. While the waste will differ from one bag to the next, our experience makes it easy for us to calculate important properties, such as, the energy available in the waste and the renewable content — details which are critical when selecting the best solution. The technology chosen needs to match the waste fuel in terms of both physical properties and environmental impact.

Despite the variants, however, all waste-to-energy plants incorporate the same basic stages:

1. Reception area

 In the reception and storage area waste is received and bulky material can be shredded. The bunker storage balances different delivery quantities (eg. over weekends) and allows for mixing in order to improve fuel quality.

2. Thermal treatment

 The thermal treatment takes place on the Doosan Lentjes grate system converting the waste into an energy-rich gas. What remains from this step is an environmentally-neutral bottom ash that can be used for construction purposes.

3. Emissions clean-up

 The potential health implications of emissions are understandably a focus of concern, which is why our emissions clean-up process ensures that all waste gases emitted from the plant meet stringent regulatory requirements. As a result, modern well-managed waste-to-energy plants have an almost negligible impact on local air quality.

4. Energy export

 The steam produced by the hot gases in the boiler is fed into a steam turbine to generate electricity, the main part of which is exported to the grid. In addition, the steam can be directly used for industrial processes or for district heating purposes.

The overall environmental benefits depend not only on the thermal treatment, but also on the energy conversion technology to which it is coupled. It is important to consider overall efficiency, net of any energy required to run the process. Waste-to-energy plants from Doosan Lentjes have a number of potential advantages, including a variety of potential energy output.
In 1998, **Doosan Lentjes** was selected to deliver a new waste-to-energy plant in Taoyuan, Taiwan. The plant combines our proven roller grate and steam generator technologies to produce electricity and heat. Doosan Lentjes provided the entire plant on a full turnkey basis. The Taoyuan facility consists of two lines capable of processing up to 450,000 tons of municipal solid waste per year and has a proven, exceptional performance. This ensures safe waste disposal and 36MW, energy supply to the national power grid, in addition, to a significant heat supply.

Global references

Today, our advanced waste-to-energy technologies convert millions of tonnes of waste into valuable energy every year, serving as testament to our professionalism and expertise. Customers around the world trust our competence in planning, engineering, manufacturing, constructing, commissioning, and delivering their facilities on schedule and to a high degree of quality.
Global challenge 1: Urbanisation

Doosan Lentjes is your experienced partner when it comes to future waste management challenges. As a reliable provider of state-of-the-art waste-to-energy solutions, we help you to flexibly handle the growing amounts of municipal solid waste produced while reducing the negative environmental impact of waste disposal.

Worldwide mega trend

The world is facing a continuous increase in population which is equivalent to a growing urbanisation that has evolved into a global mega trend: Until 2030, more than 5 billion people are expected to live in cities, two billion more than today. This development leads to growing amounts of municipal solid waste being generated: In so-called mega cities, the annual volume of waste is assumed to increase by up to 2.2 billion tonnes until 2025. Given this background, the application of advanced technologies for thermal waste treatment is the solution of choice: Increasing amounts of waste are reliably reduced while the need for landfill sites decreases.

Large-scale solutions

We, at Doosan Lentjes, understand the certain requirements imposed towards thermal waste treatment technologies in the context of global urbanisation trends: Our modern waste-to-energy solutions designed to handle increasing volumes of waste, feature efficient, multi-line incineration systems with large single units. What’s more, with respect to securing long-term flexibility, these units are capable of processing waste with continuously changing qualities and compositions.

Drawing back on decades of experience in large-scale waste-to-energy applications, we have the know-how to enable you to meet even the most demanding waste management challenges resulting from increasing quantities to be treated. Our grate-based incineration solutions have proven their efficiencies in plants built around the globe: Close to 80 units contracted to date, thermally treat millions of tonnes of solid waste. Thanks to our flexible, single units with capacities of up to 300,000 tonnes per year, our clients are in a position to reliably handle even the largest amounts of waste with changing incineration behaviour. In combination with highest plant availability and maximum cost-efficiency, our solutions help our customers to secure a safe, long-term, waste disposal while keeping operating costs at a minimum – both are critical success factors to secure a successful business performance, now and in the future.

The bottom line: Large-scale WTE solutions are the response to handling growing amounts of residual waste produced in the context of global urbanisation trends.

Profile:
Metropolitan area of Bangkok, Thailand
Citizens: Roughly 16.9 million
MSW generation: 10 million t/a
Global challenge 2: Potable water scarcity

Doosan Lentjes and Doosan Heavy Industries & Construction are global leaders in advanced waste-to-energy (WtE) and water desalination drawing back on decades of experience. Combining our capabilities allowed us to design an Integrated Waste-to-Water Process (IWWP) using municipal solid waste (MSW) to fuel seawater desalination plants.

More ecological desalination

The IWWP is tailored to the certain requirements of desert climate areas, such as, the Middle East and North Africa (MENA): On the one hand, these regions are facing significant potable water scarcity which requires the application of advanced desalination technology. On the other hand, they put extensive efforts into reducing their reliance on fossil fuels, such as, oil and gas, and identifying renewable energy sources. With this in mind, the IWWP is designed to enable efficient seawater desalination while using largely CO₂-neutral MSW to power this energy-intensive process. Applying this concept allows water-stressed regions to secure a sustainable potable water production in the long-term.

Modern waste management

Focusing on sustainability objectives, the IWWP supports efforts to implement a modern waste management system preferring recovery of energy and materials from MSW over traditional landfilling: The thermal treatment of the MSW reduces the waste volume by more than 90% which secures a reliable waste disposal in the long-run while reducing reliance on landfill sites.

Forward-thinking concepts

We, at Doosan, understand that your business success demands the application of desalination concepts achieving highest efficiencies. Given this background, the IWWP features the efficient cogeneration principle. Using the condensation heat from the steam produced during the waste incineration allows the overall process efficiency to increase to almost 80%. The WtE process generates superheated steam driving a back-pressure turbine which produces electrical energy used to cover the total power demand of both plants and to be exported to the grid or used for additional water production in a reverse osmosis (RO) plant. Simultaneously, steam from the back end of the turbine is supplied to the downstream seawater desalination plant and used to heat the seawater in the Multi-Effect Distillation (MED) process. During this, the steam condensates and is fed back to the incineration process as feed water – the water-steam-cycle closes.

Facts:

▸ 300 tons of municipal solid waste generate enough energy to produce potable water in the desalination process to cover the daily requirements of 100,000 people.
▸ The above scenario ensures annual CO₂ savings of up to 50,000 tons.
▸ Depending on customer requirements, the IWWP can be flexibly optimised for either a higher water or energy generation.

World leader in WtE and water desalination

MENA-region tailored concept

All technologies from one source

Highly efficient and sustainable process

Trusted one-stop partner

As world-class partners for WtE and water desalination, we have extensive in-house capabilities allowing us to provide you with all required technologies from one source. Depending on your individual needs, you can select the most suitable desalination technology from our product portfolio including processes, such as, MED or RO.

MENA-experience

You can expect trusted solutions to be delivered as we look back on close to 30 years of experience in the application of advanced desalination technology. Our 25 plants built in the MENA region produce more than 6.4 Mio m³ / day serving close to 21 million people with potable water. Combining our unique Doosan spirit with our engineering, project management and manufacturing competencies enables us to deliver highly efficient, forward-looking solutions to your benefit.
Global challenge 3: Waste properties

With decades of experience in global waste-to-energy projects, Doosan Lentjes offers you the right solution for your individual type of waste. Our advanced waste treatment plant designs are tailored to the requirements of fuel compositions and properties to secure a maximum combustion efficiency.

Madeira, Portugal

Integrated waste treatment centre

Fuel:
Municipal solid waste

Contract award: 1998
Number of lines: 2
Waste capacity: 128,000 t/a

In 1998, Doosan Lentjes was awarded the turnkey contract by the Autonomic Region of Madeira to deliver an integrated waste treatment centre in Madeira, Portugal.

The plant comprised both waste-to-energy plant inclusive of a clinic and slaughter waste incineration unit and bio-composting facilities along with a landfill for slag and residues.

Following the requirements of the European waste hierarchy, the government separates as much as possible into the fraction of bio waste for composting and residual waste for incineration, to minimize the waste which has to be landfilled.

With Doosan Lentjes as the sole EPC provider, the client benefited from receiving an integrated waste treatment solution from one single source.

Global variations

The economic development of a country measured by the level of income has a significant impact on its waste composition and properties. So, in low-income countries, the share of low caloric-valued organic matter in the total waste volume can be more than 60% compared to less than 30% in high-income countries. However, in low-income countries, high caloric-valued paper waste accounts for only 5% whereas for more than 70% in high-income countries.

Apart from the economic situation, also other factors have the potential to influence the properties of the waste generated. These include climate conditions in the form of precipitation frequencies, as well as, geographical locations determining the utilisation of certain materials, such as, wood for e.g. building purposes.

Prioritise customisation

We, at Doosan Lentjes, understand that locally different waste compositions and properties require the applied combustion concept to be individually adapted enabling an efficient burn-out of the fuel.

With this in mind, we have developed advanced combustion solutions for a number of different applications with caloric values ranging from 5.5 – 16 MJ/ kg and hourly throughputs of 8 – 50 tons per line. Depending on the particular application, we help our customers select the most suitable grate type and combustion chamber concept while customising the designs to individual requirements.

Pre-treatment

To ensure an efficient handling of waste with locally different compositions and properties, an appropriate mechanical biological pre-treatment might be required. Consisting of process steps for separation, digestion or drying, the pre-treatment plant aims at processing waste which is not suitable for recycling or recovery. Apart from recyclables, the pre-treatment process produces green fuels with higher caloric values positively influencing the overall incineration efficiency achieved in the WtE plant.

As an experienced partner for the efficient handling of waste across the caloric value range, we evaluate your waste compositions and properties and are in a position to deliver a fully integrated waste treatment centre. With the entire solution delivered from one source, you benefit from reducing interfaces and receiving an optimally harmonised plant design.
Added value: Long-term focused data evaluation

Modern waste-to-energy plants are complex systems that should run on advanced software monitoring solutions delivering high quality process data from all relevant sources of the facility. Evaluating these data over a longer period secures that your plant runs successfully in the long-term.

Integrated control tools

Integrated control tools (ICT), such as, Symphony Plus Historian (SPH®) help you to reliably collect, store and access data from different sources of the waste-to-energy (WtE) plant with only one single interface. Analysing these data allows identifying potentials for improving the plant performance.

Trends identification

Doosan Lentjes helps you to get more value from your data by enhancing conventional short-term monitoring activities: We analyse, compare and evaluate the collected data in the context of a longer period of time to identify trends and developments indicating operation conditions that negatively influence your future plant performance. For this purpose, all selected data collected in the WtE facility are transferred online to our local Symphony Plus Historian (SPH®) server enabling an in-depth analysis and evaluation carried out by our dedicated experts. They develop tailor-made solutions for optimising your plant’s long-term performance and reducing maintenance efforts. Drawing back on our expertise allows you to avoid expensive plant downtimes affecting your future business success.

* Symphony Plus Historian (SPH®): Trademark of ABB
Waste-to-energy in 360° at Doosan Lentjes

Visit our homepage and take a virtual journey through our WtE facilities around the globe – a great opportunity for you to experience our reference plants in an impressive 360° environment and convince yourself of our capabilities! To start the tours, please type the address below in your internet browser and open the Virtual Doosan World.

www.doosanlentjes.com
Doosan Lentjes

Doosan Lentjes is a global provider of processes and technologies for energy production from sustainable and conventional fuels. Our specific areas of expertise include circulating fluidised bed boilers, key technologies for the generation of energy from waste and sewage sludge, as well as, flue gas cleaning systems. We have been pioneering energy solutions for 90 years and convert millions of tonnes of waste into energy every year.

Doosan Lentjes is part of a powerful combination of companies united under the Doosan Group to deliver complementary technologies, skills and value to customers the world over.